Sulfur Cycling, Retention, and Mobility in Soils: A Review

نویسنده

  • Pamela J. Edwards
چکیده

Sulfur inputs to forest ecosystems originate from mineral weathering, atmospheric deposition, and organic matter decomposition. In the soil, sulfur occurs in organic and inorganic forms and is cycled within and between those forms via mobilization, immobilization, mineralization, oxidation, and reduction processes. Organic sulfur compounds are largely immobile. Inorganic sulfur compounds are more mobile, and sulfate is the most mobile. However, adsorption onto soil limits or delays sulfate ion transport. Nonspecifically adsorbed sulfate ions are held only by electrostatic charges in the double diffuse layer, so they are not held as tightly as specifically adsorbed ions that are bonded to metal oxides in the Helmholtz layer. Sulfate adsorption and desorption are controlled predominantly by pH, sulfate concentrations, concentrations and types of other cations and anions in solution, and the character of the colloidal surfaces. Watershed hydrology and subsurface flow paths play important roles in determining the fate of sulfate in soils. Theories and models of sulfate transport from and retention within watersheds focus on contact times between ions and soil materials, macropore, mesopore, and micropore flow contributions to streamflow, and overall soil moisture conditions. Retention also is affected by deposition levels. As sulfur deposition to a watershed decreases, retention decreases; however, rates of decrease depend on whether the initial adsorption was completely irreversible, partially reversible, or completely reversible. Published by: For additional copies: USDA FOREST SERVICE USDA Forest Service 5 RADNOR CORP CTR SUITE 200 Publications Distribution RADNOR PA 19087-4585 359 Main Road Delaware, OH 43015 September 1998 Fax: (740)368-0152 The Author PAMELA J. EDWARDS is a research hydrologist with the Northeastern Research Station’s Timber and Watershed Laboratory in Parsons, West Virginia. She earned B.S. and M.S. degrees in forest science and forest hydrology, respectively, from The Pennsylvania State University, and a Ph.D. in forest soils from North Carolina State University. She has conducted watershed management and forest hydrology research since 1981. Manuscript received for publication 8 April 1998

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas.

This study focussed on a comparison of the extractability of mercury in soils with two different contamination sources (a chlor-alkali plant and mining activities) and on the evaluation of the influence of specific soil properties on the behaviour of the contaminant. The method applied here did not target the identification of individual species, but instead provided information concerning the ...

متن کامل

Nutrient mobility in variable - and permanent - charge soils

Variable-charge (v-c) and permanent-charge (p-c) soils differ fundamentally with regard to many nutrient-cycling processes. Variable-charge soils are more common in the tropics than in temperature zones because their formation requires desilication, which proceeds fastest in warm, moist climates. The dynamics of nutrient mobility tend to be more complex in v-c than in p-c soils. For example, th...

متن کامل

Iron Sulfide-arsenite Interactions: Adsorption Behavior onto Iron Monosulfides and Controls on Arsenic Accumulation in Pyrite

Arsenic mobility in natural systems is often linked to iron and sulfur cycling at redox boundaries, apparently due to co-precipitation reactions of arsenic with poorly crystalline iron (oxy)hydroxides, iron monosulfides, and pyrite (e.g., Edenborn et al., 1986; Moore et al., 1988). The mobility of arsenic under anoxic, sulfate-reducing conditions is expected to be governed by interactions betwe...

متن کامل

Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes...

متن کامل

A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils.

Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998